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Abstract

It is shown that every topos with enough points is equivalent to the classifying topos of
a topological groupoid. (© 1998 Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Class.. 18B25; 18B40; 18B35

1. Definitions and statement of the result

We recall some standard definitions [1,5,9]. A topos is a category ¢ which is
equivalent to the category of sheaves of sets on a (small) site. Equivalently, & is a
topos iff it satisfies the Giraud axioms [1, p. 303]. The category of sets .#’ is a topos. and
plays a role analogous to that of the one-point space in topology. In particular, a point
of a topos ¢ is a topos morphism p:% — &. It is given by a functor p*:& —
which commutes with colimits and finite limits. For an object (sheaf) £ of &, the set
p*(E) is also denoted E,, and called the stalk of £ at p. The topos & is said to
have enough points if these functors p*, for all points p, are jointly conservative (see
[9, p. 521; 1]) Almost all topoi arising in practice have enough points. This applies in
particular to the presheaf topos C on an arbitrary small category C, and to the étale
topos associated to a scheme. In fact, any “coherent” topos has enough points (see [1,
Deligne, Appendix to Exposé VI]).
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We describe a particular kind of topos with enough points. Recall that a groupoid
is a category in which each arrow is an isomorphism. Such a groupoid is thus given
by a set X of objects, and a set G of arrows, together with structure maps

_s

U
i

Here s and ¢ denote the source and the target, u(x) € G is the identity at x €.X,
i(g) =g~ is the inverse, and m(g, k) =g o h is the composition. A topological groupoid
is such a groupoid in which X and G are each equipped with a topology, for which
all the structure maps in (1) are continuous.

Given such a topological groupoid, a G-sheaf is a sheaf on X equipped with a con-
tinuous G-action. Thus a G-sheaf consists of a local homeomorphism p: £ — X to-
gether with a continuous action map £ xy G — E, defined for all e€ E, and ¢g:y —x
in G, and denoted e,y — e-¢g; this map should satisfy the usual identities for an action.

The category Shg(X) of all such G-sheaves, and action preserving maps between
them, is a topos. It is called the classifving topos of the groupoid G =3 X. Such a classi-
fying topos always has enough points. In fact, any (ordinary) point x € X defines a point
X: 9 —Shg(X), by

HEY=E, = p ' (x).

The collection of all these points X is jontly conservative.
Our main aim is to prove that every topos with enough points is, up to equivalence,
the classifying topos of some topological groupoid:

Theorem 1.1. Let & be any topos with enough points. There exists a topological
groupoid G 3 X for which there is an equivalence of topoi

&2 Shg(X).

We end this introductory section with some comments on related work. Represen-
tations of categories of sheaves by groupoids go back to Grothendieck’s Galois the-
ory [4]. In [8], a general theorem was proved, which is similar to our result, and which
states that for every topos & (not necessarily with enough points) there is a groupoid
G 3 X in the category of locales (“pointless spaces™) for which there is an equivalence
& 22 Shg(X). This theorem was sharpened, again in the context of locales, in [7]. The
basic idea for our construction comes from the latter paper.

We wish to point out, however, that our result for topoi with enough points is
not a formal consequence of any of these theorems. Moreover, our proof is different.
The proofs in [7, 8] depend essentially on change-of-base techniques, the internal logic
of a topos, and the behaviour of locales in this context. These techniques cannot be
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applied to the present situation. In fact, we believe that the proof of our theorem is
much more accessible and direct.

2. Description of the groupoid

Let & be a topos with enough points. We recall the definition of the space X = X,
from [2, Section 2], and show that it is part of a groupoid G 33 X. First, although the
collection of all points of & is in general a proper class, there will always be a ser of
points p for which the functors p* are already jointly conservative [5, Corollary 7.17].
Fix such a set, and call its members small points of &. Next, let S be an object of &
with the property that the subobjects of powers of S, i.e., all sheaves BC S" for n >0,
together generate &. For example, S can be the disjoint sum of all the objects in some
small site for &. Let / be an infinite set, with cardinality so large that

card(S,) < card(/)

for all small points p of &.

In general, if 4 1s any set with card(4) <card(/), we call an c¢numeration of A
a function «:D =dom(x) — A, where DC/ and 27 '(a) is infinite for each a€ 4.
These enumerations carry a natural topology, whose basic open sets are the sets

Vi=AaluCal, (2)
here u is any function {i|,...,i,} — A defined on a finite subset of /. and u C o means
that i, € dom(a) and a(i; ) =u(i;), for k =1,...,n Leaving the index set / implicit, we

denote this topological space by
En(4),

and call it the enumeration space of 4.

The space X, involved in the groupoid, is defined by gluing several of these enu-
meration spaces together. A point of X is an equivalence class of pairs (p,«), where
p is a small point of & and x € En(S,) is an enumeration of the stalk S,. Two such
pairs (p,2) and (p’,a) are equivalent, i.e., define the same point of X, if there exists
a natural isomorphism 1: p* — p™ for which o’ = tgox. (Note that for such a 1, its
component g is uniquely determined by o and &', because x is surjective.) In what
follows, we will generally simply denote a point of X by (p,»). and we will not
distinguish such pairs from their equivalence classes whenever we can do so without
causing possible confusion. The topology on the space X is given by the basic open
sets Uy, g, defined for any #,,...,i, €] and any BC §", as

UI']...,,I',,.B = {([7~ o) I (2(i(), ..., a(in)) € Bp}- (3)

Observe that this is well-defined on equivalence classes; i.e., if (p,2)~(p'.2’) by an
isomorphism t as above, then (i) € B, iff «'(i) € B, where we write (i} =(x(i|),....
%(iy)) and similarly for «’.
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Next, we define the space G of arrows. The points of G are equivalence classes of
quintuples

(p0) S (q. ),

where (p,2) and (¢, f) are points of X as above, and 0: p* — ¢* is a natural isomor-
phism. (We do not require that f=#tso2.) Two such (p.a) LA (g.B) and (p'.2") LS
(¢',B") represent the same point of G whenever there are isomorphisms 7: p* — p’*
and ¢:9* —¢'* such that o’ =t50a and ' =050 8, while in addition o0 = (1. The
topology on G is given by the basic open sets ¥, #,. .;.c= V., c defined by

Visc ={(p.9) > (¢.8) | i) € B, B(j) € Cy and O(x(1)) = B())}.

Here we have again used the shorter notation x(7) for (x(i|),...,«(i,)), etc. Note, as
above, that these basic open sets are well-defined on equivalence classes. It remains to
define the structure maps (Eq. (1)) of the groupoid. For an arrow g =[(p, %) EA (q.5)).
its source and target are defined by

s(g)=(p,a) and tg)=(q,p).

The maps s and ¢ are well-defined on equivalence classes, and are easily seen to be
continuous for the topologies on X and G as just defined. For two arrows g =[( p, ) LA
(¢.$)] and A=[(q', ") 2 (r,y)] for which [¢, 5] =[q’,p’] as points of X, the compo-
sition hog in G is defined as follows: since (¢, )~ (¢’. "), there is an isomorphism
T:g% — ¢ so that f’ =150 . Define hog to be the equivalence class of

potsoll
(pa) ———= (7).

It is easy to check that his definition does not depend on the choice of 7, is again
well-defined on equivalence classes, and is continuous for the given topology on
G and the fibred product topology on G Xy G. Finally, the identity #:X — G and
the inverse i: G — G are the obvious maps u(p,oc):[(p,oc)ﬁ(p,oc)] and i[(p,2) LA

0!
(g.P1=Ug. ) — (p. )]
This completes the definition of the topological groupoid G 3 X.

3. Review of locally connected maps

Before we turn to some basic properties of the groupoid G 3 X, we need to recall
some elementary properties of locally connected (or “locally 0-acyclic” [10]) maps
between topological spaces. These properties are all analogous to well-known properties
of locally connected maps of topoi. For spaces, however, the definitions and proofs are
much simpler, and it seems worthwhile to give an independent presentation.
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A continuous map f :Z — Y of topological spaces is called locally connected (l.c.)
if f is an open map, and Z has a basis of open sets # with the property that for any
vy €Y, and any basic open set B € 4, the fibre B, = f~!(y) N B is connected or empty.

Lemma 3.1. (i) The composition of two locally connected maps is I c.
(ii) In a pullback square

VA zZ

1’ f
Ve— Y,

if fisLe then so is f'.

(iii) Any local homeomorphism (sheaf projection) is I.c.

(iv) If the composition [ =pog:Z—E—Y islc and p: E—Y is a local homeo-
morphism then g is I.c.

Proof. These are all elementary. We just remark that for (i), one first proves that for
alc. f:Z—Y with basis # as above, f(S)NB is connected for every open Be& 4
and any connected subset S C f(B). Then, if ¢:Y — W is another l.c. map with basis
«f for Y, the sets BN f~!(4), for B€ A and A€ .o/ with A C f(B). form a basis for
Z witnessing that go f is L.c. [

Proposition 3.2. For anv lc. map f:Z—Y there exists a unique (up to homco-
morphism) factorization

¢ NP .
Z>m(f) =7, /=rpoc
where p is a local homeomorphism and ¢ is a Lc. map with connected fibres.

Proof. We define the space my( f): the points are pairs (y,C) where ye Y and C is
a connected component of f~'(y). To define the topology on my( f), let 4 be the
collection of all those open sets B C Z for which B, is empty or connected (Vy € V).
Then # is a basis for Z. The basic open sets of my( /) are now defined to be the sets

B* ={(»[B.|ye f(B)},

where [B,] is the connected component of f~'(y) which contains B, = f~'(y)N B,
and B ranges over all elements of 4.

To see that this is a basis, suppose (y, C) € B* N A*. Thus, 4,B€ # and C DA NB,.
Since C is connected, there is a chain of basic open sets

A=By,B,,....B,=B
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in Z with the property that BN B, 1 NC#D (i=0,...,n —1). Now let

n—1
D:wm»~UBnmf”<()ﬂ&m&H0.
i=0
Then D€ 4, and (y,C)c D* C B¥NA*.

Now f:Z—Y factors into a map ¢:Z —m( f), ¢(z)=(f(2),[z]) where [z] is
the component of f~!f(z) containing z, and a map p:my( f)— Y, p(y,C)=y. This
map p restricts to a homeomorphism B* — f(B) for each B€ 4, hence is a local
homeomorphism. Thus ¢ is a locally connected map by Lemma 3.1(iv) and the fibres
of ¢ are evidently connected, since ¢~ '(y,C)=CcC f~'(y).

The uniqueness of this factorization is easy, and we omit the proof. [J

Corollary 3.3. (i) Let f:Z—Y be a L¢. map. Then the pullback functor of sheaves
f*:Sh(Y)— Sh(Z)

has a left adjoint fy:Sh(Z)— Sh(Y).
(i) For any pullback square of topological spaces

b

7 ——7

7 /

Y/T>Y

and f lLc. the projection formula a* f] = fib* holds.

One also says, that the “Beck—Chevalley condition” holds for this square.

Proof of Corollary 3.3. In the proof, we identify the category of sheaves £ over Z
with that of local homeomorphisms p: E— Z.

(i) For a local homeomorphism p:FE—Z, the composite fop is lc. by
Lemma 3.1(i) and (iii), so factors uniquely as fo p=(E - mo(fop)—Y) as in
Proposition 3.2. Define fi(£) to be the sheaf ny( f o p)— Y. Thus, by construction,
the stalk of fi(E) at y is the set of connected components of ( f o p)~ (),

FUE)y =no((fP) " (»)). (4)

For adjointness, let g:F — Y be a sheaf on Y, and let %:E — f*(F)=F xy Z be
a map. Then d=m0a:E—F is a map over Y, ie., goa= fo p. Since the fibres
of ¢ are discrete, &@ is constant on the connected components of each fibre (/p)~'(»),
hence factors uniquely as a map fi((E)— F.
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(i1) For a sheaf £ on Z, the adjointness of part (i) provides a canonical map
Sib*(E)—a* f/(E). 1t follows from (4) that this map is an isomorphism on each
stalk, hence an isomorphism of sheaves. [

4. Properties of the groupoid

In this section, we present some properties of the groupoid G 3 X, defined in
Section 2, which will enter into the proof of the theorem, to be given in the next
section.

Before going into this, we recall from [2] that the enumeration spaces En(4) de-
scribed in Section 2 are all connected and locally connected; in fact, each basic open
set of the form ¥, is connected. For a (small) point p:.¥ — &, the enumeration space
En(S,) is contained in our space X, via the obvious map

I.‘,,ZEH(S,,)"*Xa l‘p(l):(p’“)'

This map is a continuous injection (but not necessarily an embedding).

Proposition 4.1. The fibres of the source and target maps s,t:G— X are enumeru-
tion spaces: for a point (p,2)€ X, there are homeomorphisms s™'(p,x) = En(S,)=
1= (p.2).

Proof. It sufﬁces to prove this for the source map. Fix (p, oc) EX Note first that any

point (p,x) (q, p) in G is equivalent to the point (p,oz) P o/f) in other
words, each equivalence class has a representation of the form

(p.2) S (p. ). (5)

Thus, the evident map j, »): En(S,)— G defined by fi— [{(p,2) i (p,P)] is a bijec-
tion into s*’(p,x). Now consider a basic open set } in G as described in Section 2.
of the form

V={(p.0) > (¢, B)|2(i) € B, BU)YE Cy. (i) = B(J)}-

Representing equivalence classes in the form (5), we can also write

V={(p.2) "% (p.B) | 2(i) € By, BJ)EC, (i) =B(j)}.

Thus. for (p,o) fixed, and for s; = a(i),.. =a(i,), we see that
/(p 2V ={BE€EN(S,) 51 =Bi1),....5n = Blin)}, (6)
it (s1,...,8%)€B,NC,, and empty otherwise. But the right-hand side of (6) exactly

describes a standard basic open set (Eq. (2)) in the enumeration space En(S,). OO
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Proposition 4.2. The source and target maps are locally connected.

Proof. Again, it suffices to do one of the two, say the source map. Consider a basic
open set } C G as in the previous proof,

V={(p.0) % (p. B «(D) € By () E Cpo (i) =BU}.
Then s(V)={(p,2)|x(i)€ B, and 3f € En(S, ) a(i)=p(j)€C,)} which is {(p.x)]
2(i)eB,NC,}, and this is the union of basic open sets }, in X, where u ranges over
all partial functions wu:{i,...,i,} =S, with u(i)=(u(i),...,u(i,))€B,NC,. Thus s
is an open map. Furthermore, the proof of Proposition 4.1 shows that under the identi-
fication En(Sp)%s’l(p,oc), the set ¥ Ns~!'(p,«) corresponds to a standard basic open

set in En(S,). In particular, V Ns~'(p,a) is connected. This shows that s is a locally
connected map. [

Next, we recall from [2] that there is a topos morphism
¢:Sh(X)— &,
described at the level of the stalks by
O (E)p.) = Ep,
for each point (p,x) € X. The following lemma was proved in [2].

Lemma 4.3. The functor ¢ : & — Sh(X) has a left adjoint @. Furthermore, for each
(small) point p: 9 — &, there is a commutative (up to isomorphism) square

Sh(En(S,)) —2— Sh(X)

S —r &
for which the projection formula
ok *
i, =P ¢

holds.
(Here & =Sets =Sh(pt), while n and i, are induced by the continuous maps of

spaces pt <~ En(S,) 2, X))
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Proposition 4.4. The source and target maps s,t:G 3 X fit into a square of topos
morphisms

Sh(G) —- Sh(X)

Sh(x) —s &

which commutes up to a canonical isomorphism o :s** = 1*

Jection formula holds for this square, i.e., the induced natural transformation

@*. Moreover, the pro-

Brsit* — oo

is an isomorphism.

Proof. For a point g=[(p.2) X (¢,B)] of G, and for any object £ of &, we have

S*(/)*(E)q - E[}s
*o*(E),=E,,

and the stalk of the isomorphism ag : s*@*(£) — t*@*(E) at the point ¢ is defined to
be the isomorphism 0 : E, — E,. (It is easy to check that o¢ is continuous, using the
explicit description of the topology on @*(E) given in [2].)

Next, we prove for each sheaf F on X that s,¢*(F)=¢*@(F) (or more precisely.
that the canonical map sit*(F) — ¢@*i(F) is an isomorphism). [t suffices to check that
sit*(F)y = * oi(F), for the stalks at an arbitrary point x =(p,2) in X. Consider for
this the diagram

Sh(En(S,)) —22— Sh(G) ——Sh(X)

X

S Sh(xy 2 &

Here the left-hand square comes from a pullback of topological spaces (Proposition 4.1),
and jp,») 13 as defined in the proof of Proposition 4.1. Since s is locally connected by
Proposition 4.2, Corollary 3.3(i1) gives the projection formula

* Lk
X SU=T0 o (8)

for the left-hand square in (7). Moreover, since 6 ji, 5y =i, and ¢ ox = p, Lemma 4.3
gives that
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(pox) or=m(10jipn)" %)
for the composed rectangle. Thus
st (F)e =x*sit™(F)
=t (F)  (by (8))
=x"p"@(F)  (by (9))
=" p(F), O

5. Proof of the theorem

We will now prove the theorem stated in Section I, and repeated here in the fol-
lowing form.

Theorem 5.1. The functor ¢* :& — Sh(X) induces an equivalence of categories & =
Sha(X ).

Proof. By definition of the set of small points p of &, the functor ¢* is faithful. It
follows that @* induces an equivalence between & and the category of coalgebras for
the comonad @*@s on Sh(X) (see e.g. [9]). By standard category theory [3,9] the
latter category is in turn equivalent to that of algebras for the monad ¢*¢@, on Sh(X).
Thus, to prove the theorem, it suffices to show that for any sheaf F on X, algebra
structures

o Q(F)—F (10)
are in bijective correspondence to groupoid actions
w:FxyG—F. (1)

By the projection formula ¢*@.(F)=st*(F), maps t as in (10) correspond to maps
st¥(F)—F over X, and hence to maps %:t*(F)—s*(F) over G, since s is left
adjoint to s* By composing with the projection s*(F)=G xy F — F, these maps 7
correspond to maps

" Fxy G=s"F)—F.
For an arrow ¢ in G and a point ¢ € Fy,), we write
E-g=aer T (&, 9). (12)

To prove of the theorem, it now suffices to verify that ¢ in (10) satisfies the unit
and associativity axioms for an algebra structure if and only if the corresponding mul-
tiplication (12) satisfies the unit and associativity laws for an action.

To this end we first make the correspondence between (10) and (12) more explicit:
for a point (p,a)€ X, we have by Lemma 4.3 and Proposition 4.4,
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5
)

@F QUF ) p.y = mif(F)

= the set of connected components of 7(F).
So for a point ( p, ) € X, any ¢ € {, ) defines a connected component [¢] € i;(F), and
7 p.)([E]) then defines a point in F{, ;). Now let g be any arrow in G. Since (p, ) A
(g.f) 1s equivalent to (i.e., defines the same point of G as) (p,x) u (p,Osof) we
may represent g in the form
d

g=[(p.a) = (p, B
Then, for <€ K, ). the action (12) is defined from 7 by

é'.‘/:T(/),Z)([‘f])' (13)
For 7, the laws for an algebra structure assert that for any (€ K, ..

T([?.‘,‘)([C]):‘:v (14)

T(p.z)([f(/h/f)([g])]):T(/).z)([g])‘ (15)

But clearly, (14) states that {- 1 ={, where 1 is the identity arrow [(p,7) u (p.)
in G, while (15) states that ({-h)-g=1{_-(hog), where g and # are the arrows in G
represented by

[(p.2) S (p )] and [(p. ) S (py)l.

respectively. Since any composable pair of arrows in G can be represented in this
form, (15) is equivalent to the associativity condition for the action by G on F, and
the theorem is proved. O

6. The action by the group Aut(/)

We conclude this paper with some remarks on the action by the group H = Aut(/)
of bijections m:/ —/, from the set / to itself. There is a natural continuous action of
f1 on the space X, defined explicitly by

(p.2)-m=(p.xom),

and which is well-defined on equivalence classes.

Let Shy(X) denote the topos of H-equivariant sheaves on X. We observe first that
each sheaf ¢™(E) on X carries a natural action by H, so that from ¢ one obtains
a topos morphism i

W Shy(X)— 6.
Explicitly, ¢*(£) is the same sheaf on X as ¢*(E),

YE)={(p.oe)|(p.ax)EX, e€E,}
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and H acts on y*(£) by acting trivially in the e-coordinate.
We will prove the following proposition:

Proposition 6.1. The morphism vy :Shy(X)— & has the following properties:
(i) v* is full and faithful

(ii) ¥™* commutes with exponentials, i.e., the canonical map
MG R A

is an isomorphism, for any two sheaves E and F in 6.
(iii) ¥* is bijective on subsheaves, ie., for any sheaf E in &, ¥* induces an
isomorphism

Subs(E) — Suby (Y™ (E)).

Here Subg(E) is the set of subsheaves of £ in &, while Suby(¥*(E)) is the set of
H-invariant subsheaves of ¥*(E).

Property (i) is actually a consequence of property (iii). Using standard terminol-
ogy [6], (i) expresses that v is connected, (iii) that it is hyperconnected. Since any
hyperconnected morphism with property (ii) is locally connected, we can rephrase
Proposition 6.1 as

Corollary 6.2. The morphism Y :Shy(X)— & is locally connected and hyper-
connected.

Note that Shy(X) is an étendue [1]. Thus any topos with enough points admits
a locally connected hyperconnected cover from an étendue. This is related to a result
of [12], stating that any topos (not necessarily with enough points) admits a hypercon-
nected morphism from a (“localic”) étendue.

Proof of Proposition 6.1. As said, (i) is a consequence of (iii). For (ii), note first that
¢ naturally factors as

Sh(X)—~— Sh,(X)
\

The inverse image p* simply “forgets” the H-action. In particular, p* is conservative
(i.e., reflects isomorphisms). Moreover, since / is a discrete group, p* preserves expo-
nentials. (In fact, p is an “atomic” morphism.) To show that /™ preserves exponentials,
it therefore suffices to show that ¢™ does. We prove this in a separate lemma.

14

Lemma 6.3. The functor @* : & — Sh(X) preserves exponentials.
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Proof. This follows from Theorem 5.1 and [11, Theorem 3.6(b)], because s.7: G 3 X
are locally connected. Alternatively, trom the explicit description of ¢ in [2] together
with Lemma 4.3, one easily checks that the canonical map /(S x ¢*E) — ¢/(§) x E is
an isomorphism for each sheaf S on X and each £ € &. It then follows in the standard
way by adjointness that @* preserves exponentials. [J

We return to Proposition 6.1, and prove part (iii). Let E€ &, and let S C ¢*(E) be
an arbitrary subsheaf. We have to show that if § is H-invariant, then § = ¢*(U) for
a (necessarily unique) subsheaf U C E. By Theorem 5.1, it suffices to prove that if §
is H-invariant then it is also G-invariant. To this end, consider any arrow ¢ in G. As

in the proof of Theorem 5.1, it can be represented in the form ¢ =[(p,a) o (p.M1
Let ec £, and assume that s=(p,f,e) € S, 5 CEpp ~E,. We have to show that
Sy =(p,%,€) €S py. Choose a section ¢: U; ¢ — § through s, defined on a basic open
neighbourhood U; ¢ of (p, f). By the description of the topology on ¢*(E) in [2], we
may assume that ¢ is of the form a(g,y)= f,(»(i)) where f:C — £ in &. In particular,
s=a(p, )= 1)),

Now choose n € H so that xon(i)= fi(i). Then (p,2on(i))€ Ui ¢, so (p.xom e)=
a(p, 2o ) € 8 p.xon). By invariance of S under the action by 7, also (p,x,e)€ 5, 4,
as was to be shown. [
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