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Abstract 

It is shown that every topos with enough points is equivalent to the classifying topos of 
a topological groupoid. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Definitions and statement of the result 

We recall some standard definitions [ 1,5,9]. A topos is a category 6’ which is 

equivalent to the category of sheaves of sets on a (small) site. Equivalently, 6 is a 

topos iff it satisfies the Giraud axioms [I, p. 3031. The category of sets .(/’ is a topos. and 

plays a role analogous to that of the one-point space in topology. In particular, a point 

of a topos 4 is a topos morphism p : ,Y + 6. It is given by a functor p* : 8 - .I/ 

which commutes with colimits and finite limits. For an object (sheaf) E of 6, the set 

p*(E) is also denoted E,, and called the stulk of E at p. The topos c4’ is said to 

have enough points if these functors p*, for all points p, are jointly conservative (see 

[9, p. 521; I]) Almost all topoi arising in practice have enough points. This applies in 

particular to the presheaf topos 6 on an arbitrary small category C, and to the &tale 

topos associated to a scheme. In fact, any “coherent” topos has enough points (see [I, 

Deligne, Appendix to Exposk VI]). 
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We describe a particular kind of topos with enough points. Recall that a groupoid 

is a category in which each arrow is an isomorphism. Such a groupoid is thus given 

by a set X of objects, and a set G of arrows, together with structure maps 

Here s and t denote the source and the target, u(x) E G is the identity at x EX, 

i(g) = 8-l is the inverse, and m(s, h) = 61 o h is the composition. A topological qroupoid 

is such a groupoid in which X and G are each equipped with a topology, for which 

all the structure maps in (1) are continuous. 

Given such a topological groupoid, a G-sl@’ is a sheaf on X equipped with a con- 

tinuous G-action. Thus a G-sheaf consists of a local homeomorphism p : E + A’ to- 

gether with a continuous action map E XX G + E, defined for all e E E,y and (1: y +x 

in G, and denoted e, C/H e. 8; this map should satisfy the usual identities for an action. 

The category ShG(X) of all such G-sheaves, and action preserving maps between 

them, is a topos. It is called the chss(fjimq topos of the groupoid G 3X. Such a classi- 

fying topos always has enough points. In fact, any (ordinary) point x E X defines a point 

U : .Y + She(X), by 

i*(E) = E, = p-‘(x). 

The collection of all these points X is jointly conservative. 

Our main aim is to prove that every topos with enough points is, up to equivalence, 

the classifying topos of some topological groupoid: 

Theorem 1.1. Let t” he un~' topos rtlith enough points. There exists a topological 

yroupoid G 3 X for which there is un equiculence of topoi 

A” She(X). 

We end this introductory section with some comments on related work. Represen- 

tations of categories of sheaves by groupoids go back to Grothendieck’s Galois the- 

ory [4]. In [8], a general theorem was proved, which is similar to our result, and which 

states that for every topos (4 (not necessarily with enough points) there is a groupoid 

G 3 X in the category of locales (“pointless spaces”) for which there is an equivalence 

8” Sh&‘). This theorem was sharpened, again in the context of locales, in [7]. The 

basic idea for our construction comes from the latter paper. 

We wish to point out, however, that our result for topoi with enough points is 

not a formal consequence of any of these theorems. Moreover, our proof is different. 

The proofs in [7,8] depend essentially on change-of-base techniques, the internal logic 

of a topos, and the behaviour of locales in this context. These techniques cannot be 



applied to the present situation. In fact, we believe that the proof of our theorem is 

much more accessible and direct. 

2. Description of the groupoid 

Let (4’ be a topos with enough points. We recall the definition of the space X =X, 

from [2, Section 21, and show that it is part of a groupoid G 3 X. First, although the 

collection of all points of 6 is in genera1 a proper class, there will always be a .sct of 

points p for which the functors p* are already jointly conservative [5, Corollary 7.171. 

Fix such a set, and call its members snd points of 6. Next, let S be an object of X 

with the property that the subobjects of powers of S, i.e., all sheaves B c S” for n > 0, 

together generate G. For example, S can be the disjoint sum of all the objects in some 

small site for 6. Let I be an infinite set, with cardinality so large that 

card(S,,) < card(l) 

for all small points p of 6. 

In general, if A is any set with card(il) <card(l), we call an enurwrrrtio~z of .3 

a function x : D = dom( x) ---*A, where DC f and r-‘(a) is infinite for each at ‘-1. 

These enumerations carry a natural topology, whose basic open sets are the sets 

c:,={~~Ucx}; (2) 

here u is any function {il , . . . , i,,} + A defined on a finite subset of I, and z/ c 3 means 

that ih E dam(a) and x(ik) = u(ia), for k = I,. , n. Leaving the index set I implicit, we 

denote this topological space by 

En(A ), 

and call it the enumeration space of A. 

The space X, involved in the groupoid, is defined by gluing several of these enu- 

meration spaces together. A point of X is an equivalence class of pairs (p, Y), where 

p is a small point of 6’ and x E En(.S,) is an enumeration of the stalk S,,. Two such 

pairs (p, x) and (p’, a’) are equivalent, i.e., define the same point of X, if there exists 

a natural isomorphism r: p* + p ‘* for which x’ = 5s o x. (Note that for such a 7, its 

component z.~ is uniquely determined by G( and x’, because r is surjective.) In what 

follows, we will generally simply denote a point of X by (p. x). and we will not 

distinguish such pairs from their equivalence classes whenever we can do so without 

causing possible confusion. The topology on the space X is given by the basic open 

sets I/,, ,,,.B, defined for any il,. ..,i,,EI and any BcS”, as 

u I ,..., ;,,.~={(~,r)l(x(jl),...,r(j,))~B,~}. (3) 

Observe that this is well-defined on equivalence classes; i.e., if (p, r) - (p’. r’) by an 

isomorphism T as above, then r(i) E BP iff x’(i) E B,>l, where we write x(i) = (x( iI ). . 

x( i,,)) and similarly for x’. 



Next, we define the space G of arrows. The points of G are equivalence classes of 

quintuples 

where (p, x) and (q, b) are points of X as above, and 0 : p* + q* is a natural isomor- 

phism. (We do not require that fi = fls o z.) Two such (p. c() 5 (q, /3) and (p’, x’) z 

(q’, /I?) represent the same point of G whenever there are isomorphisms r : p* + p’* 

and a:q* +q ‘* such that CC’ = zs o ‘2 and /Y = crs o p, while in addition a() = 0’~. The 

topology on G is given by the basic open sets C: ,.....,,,. B .,,._._, i,,,~ = K,L(.,,c’ defined by 

V LB,I.C = {(P, 2) 5 (4, P) I a(i) E B,,, B(j) E C,, and @x(i)) = /%A}. 

Here we have again used the shorter notation z(i) for (z(ir),. ..,r(i,)), etc. Note, as 

above, that these basic open sets are well-defined on equivalence classes. It remains to 

define the structure maps (Eq. ( 1)) of the groupoid. For an arrow 9 = [(p, x) $ (q, fi)], 

its source and target are defined by 

The maps s and t are well-defined on equivalence classes, and are easily seen to be 

continuous for the topologies on X and G as just defined. For two arrows g = [(p, a) 5 

(q, j?)] and h = [(q’, /I’) 3 (r, y)] for which [q, /I’] = [q’, b’] as points of X, the compo- 

sition ho CJ in G is defined as follows: since (q,/l) N (q’,[?), there is an isomorphism 

cq* +q ‘* so that B’ = zg o [I. Define h o CJ to be the equivalence class of 

/’ 0 I) 0 I) 

(P>X) - (r, 7). 

It is easy to check that his definition does not depend on the choice of T, is again 

well-defined on equivalence classes, and is continuous for the given topology on 

G and the fibred product topology on G xx G. Finally, the identity u :X + G and 

the inverse i:G+G are the obvious maps u(p,a)=[(p,x)~(p,~)] and i[(p,x) 5 

(%B>l=K%P) ‘5 (Pv~>l. 
This completes the definition of the topological groupoid G 3X. 

3. Review of locally connected maps 

Before we turn to some basic properties of the groupoid G 3 X, we need to recall 

some elementary properties of locally connected (or “locally O-acyclic” [lo]) maps 

between topological spaces. These properties are all analogous to well-known properties 

of locally connected maps of topoi. For spaces, however, the definitions and proofs are 

much simpler, and it seems worthwhile to give an independent presentation. 
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A continuous map ,f : Z + Y of topological spaces is called lodly connrctrd (l.c.) 

if ,f is an open map, and Z has a basis of open sets 3 with the property that for any 

~3 E Y, and any basic open set B E 8, the fibre B,. = ,f -l(y) n B is connected or empty. 

Lemma 3.1. (i) The composition qf two locally c.onnwtrd mups is 1.c 

(ii) In u pullback .s~Iwvr~ 

tf f is 1. c. then so is J“. 

(iii) AnIl locul homromorphism (sheaf’ prqjwtion) is 1. I’. 

(iv) [f’ thr composition ,f = p o y : Z + E + Y is l.c. md p : E + Y is N locul homeo- 

morphism then $1 is l.c. 

Proof. These are all elementary. We just remark that for (i), one first proves that for 

a l.c. ,f’ : Z + Y with basis .a as above, ,f (S) n B is connected for every open B E .fl 

and any connected subset S c ,f(B). Then, if q : Y --i W is another l.c. map with basis 

.c/ for Y, the sets Bnf’-‘(A), for BE .& and A E .d with A c ,f(B), form a basis for 

Z witnessing that q o ,f is l.c. 0 

Proposition 3.2. For un?’ l.c. mup ,f : Z + Y there rsists u uniqur (up to homw- 

morphism) ,fGtorizution 

z 1, 7c”( f’) 2 Y, f =poc, 

\~hrre p is N locul horneomorphism und L’ is u l.c. rnup nith connectrd ,fihrrs. 

Proof. We define the space Q( ,f): the points are pairs (I’, C) where y E Y and C is 

a connected component of ,f -l(v). To define the topology on no( ,f’), let .# be the 

collection of all those open sets B c 2 for which Bj, is empty or connected (V-V E Y ). 

Then .8 is a basis for Z. The basic open sets of q~( ,f) are now defined to be the sets 

B” = {(.K [B,.l) I .Y E .f (B)}, 

where [B,] is the connected component of ,f-‘(_v) which contains B, =,f’-‘(JT)RB. 

and B ranges over all elements of 2. 

To see that this is a basis, suppose (J: C) E B* nA*. Thus, A, B t .H and C > A ,. n B,.. 

Since C is connected, there is a chain of basic open sets 

A=BO,B ,,..., B,,=B 
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in 2 with the property that B, n B,, I n C # 0 (i = 0,. . . , n - 1). Now let 

( 
n-l 

D=(BoU .” UB,)flf_’ f--) ,f(B,flB,+,) 
I=0 ) 

Then DE.%‘, and (y,c)~D*cB*nA*. 

Now f : Z + Y factors into a map c: Z + 7[0( f), c(z) =(.f(z),[z]) where [z] is 

the component of f’-‘,f’(z) containing z, and a map p : 7co( .f‘) + Y, p( y. C) = y. This 

map p restricts to a homeomorphism B” + f(B) for each B E 24, hence is a local 

homeomorphism. Thus c is a locally connected map by Lemma 3.1 (iv) and the fibres 

of c are evidently connected, since ~~‘(y, C) = C c f-'(y). 

The uniqueness of this factorization is easy, and we omit the proof. 0 

Corollary 3.3. (i) Let ,f’ : Z + Y he u 1.~. vzup. Thm thr pullback jiinctor ~f‘sheaues 

j”*:Sh(Y)+Sh(Z) 

bus u left udjoint ,f! : Sh(Z) + Sh( Y). 

(ii) For uny pullback squurr of topoloyicul spuws 

und f l.c. the projection j?wmulu a* jy = jib* holds. 

One also says, that the “Beck-Chevalley condition” holds for this square 

Proof of Corollary 3.3. In the proof, we identify the category of sheaves E over Z 

with that of local homeomorphisms p : E + Z. 
(i) For a local homeomorphism p: E +Z, the composite f‘o p is l.c. by 

Lemma 3.1(i) and (iii), so factors uniquely as jo p= (E + ~(,f’o p) + Y) as in 

Proposition 3.2. Define f!(E) to be the sheaf no(.f o p) + Y. Thus, by construction, 

the stalk of j;(E) at y is the set of connected components of (f’o p)-‘(y), 

f&9,, = ZO((~P)-I(Y)). (4) 

For adjointness, let q : F + Y be a sheaf on Y, and let x : E --t ,f’*(F) = F x y Z be 

a map. Then cl = n’ o CI : E + F is a map over Y, i.e., q o #? = ,f o p. Since the fibres 

of q are discrete, Cc is constant on the connected components of each hbre (.jj7)-‘(y), 

hence factors uniquely as a map ,fi(E) + F. 
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(ii) For a sheaf E on 2, the adjointness of part (i) provides a canonical map 

,f\h*(E) --*f,(E). It follows from (4) that this map is an isomorphism on each 

stalk, hence an isomorphism of sheaves. 0 

4. Properties of the groupoid 

In this section, we present some properties of the groupoid G 3X, defined in 

Section 2, which will enter into the proof of the theorem, to be given in the next 

section. 

Before going into this, we recall from [2] that the enumeration spaces En(A) de- 

scribed in Section 2 are all connected and locally connected; in fact, each basic open 

set of the form Vu is connected. For a (small) point p : .Y + 4, the enumeration space 

En(S,) is contained in our space X, via the obvious map 

i,, : En(S,)) -X, &(x) = (P, r). 

This map is a continuous injection (but not necessarily an embedding). 

Proposition 4.1. The jibres c~f’ the source and turgrt maps s, t : G + X are enumrrtr- 

tion .Y~UCPS: ,f,r LI point (p, J) E X, there are homeomorphisms .s- ’ ( p, x) 2 En(S,, ) 2 

t-y/7,x). 

Proof. It suffices to prove this for the source map. Fix (p, (x) E X. Note first that any 

point (p, x) J+ (q, p) in G is equivalent to the point (p, x) 2 ( p, 0.;’ o /I’); in other 

words, each equivalence class has a representation of the form 

(L&a) +I (p,/3). (5) 

Thus, the evident map .jc,,%) : En(S,) + G defined by I)- [(~,r) 2 (p,fi)] is a bijec- 

tion into s-r (p, x). Now consider a basic open set V in G as described in Section 2. 

of the form 

V = {(P, x) 3 (y,B) I x(4 E &,, B(j) E C,. O(Ni)) = BC.i)}. 

Representing equivalence classes in the form (5), we can also write 

V = {(P, x) 2 (PIP) I x(i) E BP, B(j) E C,, x(4 = Ki)). 

Thus. for (~,a) fixed, and for .~I = a(ir ),. .,s,, =u(i,), we see that 

.i,[,,(v)={BEEn(S,,)/s~=l~(j~),...,.~,=P(j,)}, (6) 

if (s, , . ,s,) E BP n C,,, and empty otherwise. But the right-hand side of (6) exactly 

describes a standard basic open set (Eq. (2)) in the enumeration space En(S,,). fl 
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Proposition 4.2. The source and turget mups we locally connected. 

Proof. Again, it suffices to do one of the two, say the source map. Consider a basic 

open set V c G as in the previous proof, 

Then s(V)= {(p,x) 1 a(i) E B,, and 38~ En(Sp)(x(i)=P(j)EC,)} which is {(p,x) 1 

a(i)E B,, f’ C,}, and this is the union of basic open sets VU in X, where u ranges over 

all partial functions u : { il , . , i,,} -S, with u(i) = (u(i, ), , IA(&)) E B,, n C,]. Thus s 

is an open map. Furthermore, the proof of Proposition 4.1 shows that under the identi- 

fication En(&) ” s-‘(p, x), the set V n s-‘(p, x) corresponds to a standard basic open 

set in En($). In particular, V n s-‘(p, x) is connected. This shows that s is a locally 

connected map. 0 

Next, we recall from [2] that there is a topos morphism 

cp : Sh(X) + 8, 

described at the level of the stalks by 

for each point (p, x) E X. The following lemma was proved in [2]. 

Lemma 4.3. The functor q* : 8 + Sh(X) has u kft adjoint cp!. Furthermore, Jbr euch 

(smull) point p : Y + Q, there is u commututitre (up to isomorphism) squure 

Sh(En(S,)) b Sh(X) 

,for which the projection ,fi,rmulu 

holds. 

(Here .Y = Sets = Sh(pt), Ichile 71 und if, are induced by the continuous mups of 

spuces pt c En(S,) 3 X.) 



Proposition 4.4. The source und target mups s, t : G 3 X jit into N squclrr of’ topos 

morphisms 

Sh(G) 2 Sh(X 1 

\l,hicll commutes up to u runonicul isomorphism (T : s*cp* ” t* ‘p*. Morrocer, the pr-o- 

jcction ,fiwmulu holds ,fix this square, i.e., the induced natural trun~fbrmution 

/I :sg* - $(P! 

is un isomorphism. 

Proof. For a point g = [(p, X) 5 (q, fi)] of G, and for any object E of A, we have 

s*cp*(E), = E[,, 

t*v*(E), = EC,, 

and the stalk of the isomorphism CQ : s*cp*(E) -t*cp*(E) at the point y is defined to 

be the isomorphism f)E: E,, + EIl. (It is easy to check that ~JE is continuous, using the 

explicit description of the topology on q*(E) given in [2].) 

Next, we prove for each sheaf F on X that .s!t*(F)= (p*q~l(F) (or more precisely. 

that the canonical map s!t*(F) - 9*9!(F) is an isomorphism). It suffices to check that 

,slt*(F), =(p*~p!(F), for the stalks at an arbitrary point x=(p,r) in A’. Consider for 

this the diagram 

Sh(En(S,)) “‘‘-‘I i Sh(G) Ash(X) 

(7) 

Here the left-hand square comes from a pullback of topological spaces (Proposition 4. I ). 

and ,ic ,l,T) is as defined in the proof of Proposition 4. I. Since s is locally connected by 

Proposition 4.2, Corollary 

for the left-hand square in 

gives that 

3.3(ii) gives the projection formula 

(7). Moreover, since t ~j(,,.~~ = i,, and cp OX = p, Lemma 4.3 
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(9) 

for the composed rectangle. Thus 

s!t*(F)x =x*s!t*(F) 

= T&,,+*(F) (by (8)) 

=x*cp*cp!(F) (by (9)) 

= cp*4n!(Q, 0 

5. Proof of the theorem 

We will now prove the theorem stated in Section 1, and repeated here in the fol- 

lowing form. 

Theorem 5.1. The functor ‘p* : 6 ----t Sh(X) induces an equivalence oj’ categories 8 zs 

SAX). 

Proof. By definition of the set of small points p of 8, the functor cp* is faithful. It 

follows that cp* induces an equivalence between 8 and the category of coalgebras for 

the comonad q*(p* on Sh(X) (see e.g. [9]). By standard category theory [3,9] the 

latter category is in turn equivalent to that of algebras for the monad (p*q! on Sh(X). 

Thus, to prove the theorem, it suffices to show that for any sheaf F on X, algebra 

structures 

T : cp*qn!(F) + F 

are in bijective correspondence to groupoid actions 

(10) 

p:FxxxG+F. (11) 

By the projection formula q~*cp!(F) = .qt*(F), maps r as in (10) correspond to maps 

s!t*(F) + F over X, and hence to maps z”: t*(F)+s*(F) over G, since s! is left 

adjoint to s*. By composing with the projection s*(F)= G xx F +F, these maps ? 

correspond to maps 

T*:Fx~G=s*(F)+F. 

For an arrow 9 in G and a point s’ E FscqJ, we write 

5 y =def T*(& s>. (12) 

To prove of the theorem, it now suffices to verify that r in (10) satisfies the unit 

and associativity axioms for an algebra structure if and only if the corresponding mul- 

tiplication (I 2) satisfies the unit and associativity laws for an action. 

To this end we first make the correspondence between ( 10) and (12) more explicit: 

for a point (p, a) EX, we have by Lemma 4.3 and Proposition 4.4, 



= the set of connected components of i,:(F). 

So for a point (p,/j) EX, any < E /$,J, defines a connected component [i] E i,*(F). and 

r,,).,,([<]) then defines a point in F,,,,). Now let {J be any arrow in G. Since (p. II) .!L 

(y./j) is equivalent to (i.e., defines the same point of G as) (p,x) 2 (p,Os o/j) we 

may represent (/ in the form 

,/=[(p.x) 4 (P>P)l. 

Then, for f l fi,,,j,, the action ( 12) is defined from T by 

:‘I/=rr,,.,,([:]). (13) 

For T, the laws for an algebra structure assert that for any _ E F,,,;.,, 

qp.;d[<l) = r, (14) 

rc,.~)([T(,,./~)([i])]) = r(,,,,,([<]). (15) 

But clearly, (14) states that i:. I = C, where 1 is the identity arrow [(p,;~) 2 (p, ;!)I 

in G, while (15) states that (i.h).<~=i.(hoq), where g and h are the arrows in G 

represented by 

respectively. Since any composable pair of arrows in G can be represented in this 

form, (15) is equivalent to the associativity condition for the action by G on F, and 

the theorem is proved. 0 

6. The action by the group Aut(l) 

We conclude this paper with some remarks on the action by the group H = Aut(f ) 

of bijections n : I - I, from the set I to itself. There is a natural continuous action of 

H on the space X, defined explicitly by 

and which is well-defined on equivalence classes. 

Let ShH(X) denote the topos of H-equivariant sheaves on X. We observe first that 

each sheaf q*(E) on X carries a natural action by H, so that from cp one obtains 

a topos morphism $: 

11: ShH(X) + 8. 

Explicitly, $*(E) is the same sheaf on X as q*(E), 

lL*(E)={(p,cc,e)I(p,r)EX, ec&} 
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and H acts on $*(E) by acting trivially in the e-coordinate. 

We will prove the following proposition: 

Proposition 6.1. The morphism Ic/ : ShH(X) + 8 bus the ,fbllowiny properties: 

(i) $* is fill and j&thjid. 

(ii) $I* commutes Irith exponentiuls, i.e., the cunonicul map 

$*(FE) - l//*(F)~-‘E’ 

is an isomorphism, jtir uny taco sheaves E und F in 6. 

(iii) $* is hijective on subsheaves, i.e., jbr uny sheaf E in 8, $* induces cIn 

isomorphism 

SubE(E) + Sub&*(E)>. 

Here Sub&(E) is the set of subsheaves of E in 8, while SubH( G*(E)) is the set of 

H-invariant subsheaves of $*(E). 

Property (i) is actually a consequence of property (iii). Using standard terminol- 

ogy [6], (i) expresses that Ic/ is connected, (iii) that it is hyperconnected. Since any 

hyperconnected morphism with property (ii) is locally connected, we can rephrase 

Proposition 6.1 as 

Corollary 6.2. The morphism $ : ShH(X) + G is locully connected and hyper- 

connected 

Note that ShH(X) is an Ctendue [l]. Thus any topos with enough points admits 

a locally connected hyperconnected cover from an Ctendue. This is related to a result 

of [12], stating that any topos (not necessarily with enough points) admits a hypercon- 

netted morphism from a (“localic”) etendue. 

Proof of Proposition 6.1. As said, (i) is a consequence of (iii). For (ii), note first that 

cp naturally factors as 

Sh(X) 1 ShdX) 

The inverse image p* simply “forgets” the H-action. In particular, p* is conservative 

(i.e., reflects isomorphisms). Moreover, since H is a discrete group, /I* preserves expo- 

nentials. (In fact, p is an “atomic” morphism.) To show that $* preserves exponential?+ 

it therefore suffices to show that ‘p* does. We prove this in a separate lemma. 

Lemma 6.3. The jiinctor ‘p* : 8 + Sh(X) preserves exponentia1.s. 
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Proof. This follows from Theorem 5. I and [ 11, Theorem 3.6(b)], because s, t : G 2 X 
are locally connected. Alternatively, from the explicit description of cp! in [2] together 

with Lemma 4.3, one easily checks that the canonical map q!(S x (p*E) + q!(S) x E is 

an isomorphism for each sheaf S on X and each E E 6. It then follows in the standard 

way by adjointness that cp* preserves exponentials. C 

We return to Proposition 6.1, and prove part (iii). Let E E cf’, and let S c q*(E) be 

an arbitrary subsheaf. We have to show that if S is H-invariant, then S = (p*(U) for 

a (necessarily unique) subsheaf I/ c E. By Theorem 5.1, it suffices to prove that if S 

is H-invariant then it is also G-invariant. To this end, consider any arrow y in G. As 

in the proof of Theorem 5. I, it can be represented in the form y = [(p, c() 2 (p, fi)]. 

Let et E,, and assume that s = (p,fi,e) t SC,,,/{) c EC,,/{, = E,]. We have to show that 

s y = (p, x, e) E Sc,,.X,. Choose a section r~ : U,,c + S through s, defined on a basic open 

neighbourhood U,,c of (p,/). By the description of the topology on (p*(E) in [2], we 

may assume that cr is of the form o(q, y) = j;i(y(i)) where ,f : C --t E in 8. In particular, 

s = (J(P, B) = ./&B(i)). 
Now choose 7rr~ H so that xon(i)=/I(i). Then (~,xon(i))~ U,.c, so (p,xo~e)== 

4P.~O~)~~(p.zon). By invariance of S under the action by n, also (p, x, e) E Sc,j,l,, 

as was to be shown. 0 
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